

Part 1. General Chromatographic Theory

Part 2. Overview of HPLC Media

Part 3. The Role of the Mobile Phase in Selectivity

Part 4. Column Care and Use

Reversed-Phase Solvents

Solvents for RP Chromatography

Ophenomenex

Stationary Phase:

- Bonded phase (C18 vs Phenyl)
- Particle (Core-shell vs Monolith)

Mobile Phase:

- Choice of solvent (ACN vs MeOH)
- Mobile phase pH
- Temperature
- Gradients

Solvents for RP Chromatography

Mobile phase selection is much more challenging that stationary phase selection because the options are limitless. However, in practical method development, we can dramatically narrow down the options to focus on those conditions which will give us the highest likelihood of success.

Typical RP Solvents:

Ophenomenex

Weak Solvent:Water/BufferStrong Solvent:Acetonitrile (64)
Methanol (34)
Composite mixtures (1)
THF (1)Frequency of use

Solvents for RP Chromatography

The **solvent strength** of a solvent will depend upon its hydrophobicity. The solvent strengths will determine the amount of solvent needed to elute a given compound.

Reversed Phase Solvent Strengths:

Ophenomenex

Other considerations when selecting solvents:

- Methanol high viscosity may limit use of smaller particle size or longer columns at elevated flow rates
- Acetonitrile relatively high cost
- THF UV absorbance at low wavelengths; high viscosity

Solvent Strength

- 35% Methanol 10 12 14 min **20% Acetonitrile** 12 0 2 6 10 14 min
- Analytes elute earlier when using acetonitrile (even at lower % ACN)
- Change in elution order when switching to ACN

Solvent Selectivity

Ophenomenes

The elution strength of a given solvent is determined by its hydrophobicity (e.g. heptane would be stronger than hexane because it is more hydrophobic). The selectivity of a solvent, however, is determined by its **polar characteristics** (e.g. heptane and hexane would have the same solvent selectivity).

Ophenomenex Solvent Screening for Isocratic Methods

1. Start at high %acetonitrile and work backwards until k' is 2-10 (if possible)

C KINETEX.

2. Repeat with alternative solvent:

Solvents and Phenyl Selectivity

For any reversed-phase method, the choice of acetonitrile or methanol will have a significant effect on the final selectivity of the method. However, when using phenyl phases (e.g. Luna Phenyl-Hexyl; Synergi Polar-RP), you will find that **methanol is a much more effective solvent** for bringing out the unique *pi-pi* selectivity of the phenyl phase.

This is most likely due to the fact that the pi electrons of the nitrile bond in acetonitrile is able to disrupt interactions between the pi electrons of analyte molecules and the stationary phase phenyl ring pi electrons, while methanol is unable to do this as effectively.

Solvents and Phenyl Selectivity

Columns:

Ophenomenex

Mobile phase:

Flow rate:

Components:

- 5 μm **C18(2)** 150x4.6 mm 5 μm **Phenyl-Hexyl** 150x4.6 mm
- A: 20 mM Potassium phosphate pH 2.5 B: 27% Acetonitrile <u>or</u> 50% Methanol

1.0 mL/min

Extract from Goldenseal:

- 1. Hydrastine
- 2. Berberine

Hydrastine

Berberine

Solvents and Phenyl Selectivity 27:73 <u>Acetonitrile</u> : 20 mM Potassium Phosphate pH 2.5

Pphenomenex

mΑU C18(2) min mΑU **Phenyl-Hexyl** m in

Solvents and Phenyl Selectivity 50:50 <u>Methanol</u> : 20 mM Potassium Phosphate pH 2.5

Buffers and the Role of Mobile Phase pH

Buffer Selection for RP-HPLC

Choosing the correct buffer for HPLC method development can seem very intimidating due to the vast number of buffers available. *But it's really not*, because the majority of methods use just a few buffers!!

Practical considerations when evaluating mobile phase pH:

1. Stability of target analyte(s)

- 2. Hydrolysis of stationary phase at low pH
 - Acids stronger than TFA will cause loss of stationary phase
 - Decrease in retention, exposure of silanols groups
 - Stability limit will vary depending vendor/brand of media
- **3. Dissolution** of silica at high pH
 - "Typical" silica-based phases stable up to pH ~8
 - Protective bonding (e.g. Luna[®]) increases stability to pH ~10
 - Organosilica hybrid (e.g. Gemini[®]) increases stability to pH ~12

Buffer Selection for RP-HPLC

Buffer⁺	p <i>K</i> a	Buffer Range (pH)	MS Compatible	Buff er [†]	pK _a	Buffer Range (pH)	MS Compatible
Trifluoracetic Acid	< 2	< 2.5	●‡	TRIS	8.3	7.3 - 9.3	
Phosphoric Acid (p K_1)	2.1	1.1 - 3.1		Diethanolamine	8.9	7.9 - 9.9	•
Citric Acid (p <i>K</i> ₁)	3.1	2.1 - 4.1		Ammonia	9.2	8.2 - 10.2	•
Formic Acid	3.8	2.8 - 4.8	•	Ethanolamine	9.5	6.5 - 10.5	•
Citrate (p K_2)	4.7	3.7 - 5.7		Carbonate (p K_2)	10.3	9.3 - 11.3	•
Acetic Acid	4.8	3.8 - 5.8	•	Diethylamine	10.5	9.5 - 11.5	•
Citrate (pK₃)	5.4	4.8 - 6.0		Triethylamine	11.0	10.0 - 12.0	•
Carbonate (pK₁)	6.4	5.4 - 7.4	•	Piperidine	11.1	10.1 - 12.1	
\rightarrow Phosphate (p K_2)	7.2	6.2 - 8.2		Phosphate (p K_3)	12.3	11.3 - 13.3	
Triethanolamine	7.8	6.8 - 8.8	•				

Buffer Selection for RP-HPLC

Phenomenex

Buffers for Low pH					Buffers	for High pH		
	рКа	Range					рКа	Range
TFA	<2	<2.5			Bicarb	onate (pK2)	10.3	9.3 - 11.3
Phosphoric acid	2.1	1.1 - 3.1						/
Formic Acid*	3.8	2.8 - 4.8						
2.5		4.5	7	7.0	8.5		10	
			Buffers for Neutral pH					
				рКа	Range			
		Phosph	nate (pK2)	7.2	6.2 - 8.2			

Effect of pH on Base Silica

Any silica-based RP material will have some **residual silanols** left after bonding and end-capping. These Si-OH groups can be deprotonated at values above **pH** ~3.5. The deprotonated silanols are more likely to engage in ion-exchange with basic analytes, leading to peak tailing.

Dohenomenex

- Silanols protonated
- Less ion-exchange
- Less peak tailing

Silanols deprotonated

- Increased ion-exchange
- Increased peak tailing

pH >3.5

Effect of pH on Analyte Ionization

The primary mechanism of retention in RP chromatography is hydrophobic interaction. Ionizing compounds will cause them to behave as more polar species, and reduce their hydrophobic interaction with the stationary phase, leading to decreased retention.

Ophenomenex

The ionization state of a molecule will be determined by the pH of the mobile phase. Therefore, **mobile phase pH will dictate retention behavior of analytes with ionizable functional groups**.

Ophenomenex Effect of pH on Analyte Ionization

Ophenomenex Effect of pH on Analyte Ionization

Ophenomenex Effect of pH on Analyte Ionization

Ophenomenex* Effect of pH on Analyte Retention Amitriptyline (pKa 9.4) = (B)ase Toluene = (N)eutral Vertical Vertical

Method Development Exercise 3: Optimizing Mobile Phase and Stationary Phase

KINETEX.

Analysis of nicotine and metabolites:

using ACN

Optimizing Mobile and Stationary Phase

A = 0.1% Formic acid in water
B = 0.1% Formic acid in acetonitrile
5% to 95% in 10 min
1.5 mL/min
254 nm
Nicotine (0.1%), 1 μ L injection

Poor retention at low pH due to ionization

Optimizing Mobile and Stationary Phase

Mobile phase: A = 10mM ammonium bicarbonate pH 10.5

B = acetonitrile

Gradient 5% to 95% in 10 min

Flow rate: 1.5 mL/min

Detection: 254 nm

🖸 phenomenex

Components: Nicotine (0.1%), 1 µL injection

Improved retention at high pH

High pH using Organosilica Hybrid

Column: Mobile Phase:

Dohenomenex

Gemini-NX C18, 3 µm 50 x 2.0 mm

- ile Phase: A: 20 mM Ammonium Bicarbonate
 - B: 100% Acetonitrile

Gradient:

Time (min)	B (%)
0.00	10
3.00	75
3.10	10
5.00	10
Flow Rate:	0.5 mL/mi
Injection Volume:	10 µL
Temperature:	25 °C

The purpose of gradient elution is to separate in the same chromatography run, compounds which differ widely in hydrophobicity, and which would not elute in a reasonable amount of time using isocratic elution.

Gradient elution:

- Sharpens peaks for better quantitation
- Improves the detection of small, later eluting peaks
- Is useful to clean and regenerate the column after each run
- Is useful for **scouting** analytical conditions

Columns:	3 μm C18(2) 50x4.6 mm				
Mobile phase:	70:30 0.1% TFA in Water : 0.1% TFA in Acetonitrile				
Flow rate:	2.0 mL/min				
Components:	1. Thiourea (t _o marker)				
	2. Caffeine				
	3. Phenol				
	4. Acetophenone				
	5. Dimethylphthalate				
	6. Butyrophenone				
	7. Valerophenone				

Gradient Analysis

KINETEX.

3 µm C18(2) 50x4.6mm A = 0.1% TFA in Water B = 0.1% TFA in Acetonitrile 5 to 100% B in 5 min

2.0 mL/min

2.0 mL/min

2. Caffeine

4. Acetophenone

6. Butyrophenone 7. Valerophenone

5. Dimethylphthalate

3. Phenol

1. Thiourea (t₀ marker)

The gradient slope is analogous to solvent strength in isocratic elution.

Isocratic Solvent Strength:

Ophenomenes

Increasing the solvent strength reduces analysis time but also reduces resolution.

Decreasing the solvent strength increases resolution at the cost of increased analysis time.

Solvent strength sometimes affects selectivity

Increasing the gradient slope reduces analysis time but also

Gradient Slope:

reduces resolution.

Decreasing the gradient slope increases the resolution at the cost of increased analysis time.

Gradient slope sometimes affects selectivity

The goal of gradient elution is to optimize resolution while minimizing analysis time.

Example: Five herbicides

Column used: C18 150 x 4.6mm

atrazine

baygon

dieldrin

tebuthiuron

Five herbicides in isocratic elution mode:

Gradient slope: <u>1% / minute</u>

20 - 80% ACN over 60 minutes

Gradient slope: 2% / minute

20 - 80% ACN over 30 minutes

Gradient slope: <u>3% / minute</u>

20 - 80% ACN over 20 minutes

Gradient slope: <u>4% / minute</u>

20 - 80% ACN over 15 minutes

Ophenomenex

*Increasing the gradient slope will decrease overall retention and also decrease resolution

Effect of Starting %Organic

Gradient slope: <u>3% / minute; Initial Strong Solvent = 30%</u>

30 - 90% ACN over 20 minutes

Ophenomenex

*Increasing the amount of starting strong solvent will decrease overall retention and resolution

Gradient Method Summary

- 1. Begin with "scouting" gradient to see analyte elution times:
 - 5-95% organic over X min (1 min per cm of column length)
 - 150x4.6 mm = 5-95% B over 15 min
- 2. Make adjustments to starting % organic to **accommodate early-eluting** components
 - isocratic hold at 3% organic for x min
- 3. Adjust gradient slope to optimize resolution or critical pairs
 - Shallower to improver R_s (5-95% B over 20 min)
 - Steeper if you have excess R_s (5-95% B over 12 min)
- 4. Optimize ending % organic for **clean-up**
 - Stop gradient at 65% B

- 5. Adjust starting % organic to reduce run time (if not limited by polar components)
 - 5-65% B over 18 min
 - 10-70% B over 18 min
 - 15-75% B over 18 min

Effect of Temperature

Temperature in HPLC Methods

The use of temperature in HPLC method development presents a challenge because it can have unpredictable effects on selectivity.

The use of elevated temperatures will:

1. **Reduce mobile phase viscosity** and back-pressure. This can allow you to operate at higher flow rates, or to use longer columns/smaller particle sizes.

2. Reduce elution time.

Dohenomenex

3. Improve method **reproducibility** (as opposed to operating at room temperature).

However, it is impossible to determine if the use of elevated temperatures will help or hinder a specific separation. For complex separations, improvements in one portion of the chromatogram are almost always accompanied by decreases in another part of the same chromatogram.

Temperature in HPLC Methods

In our method development work:

Dohenomenex

- 1. Initial method development is performed at 30 °C.
 - Column screening
 - Mobile phase selection and optimization
- 2. Higher temperatures are investigated only when:
 - We need to reduce back-pressure (usually with increasing flow rate or using a longer column length)
 - Unable to achieve required resolution at 30 °C

Method Development Exercise 3: Gradient Optimization and Phase Screening

KINETEX.

Gradient Method Optimization

Barbiturates are CNS depressants, and have been used to induce anaesthesia, and treat anxiety and insomnia, but are also subject to abuse.

Ophenomenex

The challenge with LC/MS analysis of these compounds is that amobarbital and pentobarbital are isomers with the same mass and must be separated chromatographically.

Optimize Mobile Phase and Stationary Phase

Scouting Gradient

1. Rapid, steep gradient slope to determine general behavior of analytes:

10-90% B over 5min; 16% / min

Ophenomenex

- Good retention
 Good peak share
 Reduce are
- Good peak shape

Reduce gradient slope

• No separation

Gradient Optimization

ohenomenex

Final Barbiturate Method

Final Method: XIC of -MRM (12 pairs): 223.1/42.1 Da ID: Butalbital-2 from Sample 9 (1.0-2-1) of 021... Max. 2.7e6 cps. 2.7e6 2.6e6 1. Phenobarbital 2.4e6 2. Butalbital 2.2e6 3. Pentobarbital 2.0e6 4. Amobarbital 1.8e6 5. Secobarbital 1.6e6 cbs 1.4e6 1.2e6 1.0e6 8.0e5 6.0e5 4.0e5 2.0e5 0.0 1.0 49 3.0 144 4.0 9.0 429 10.0 477 2.0 96 5.0 6.0 7.0 334 8.0 382 191 239 287 Time, min

Ophenomenex

Running conditions

2.6 µm Core-Shell C18 100x2.1 mm

- A = 5mM ammonium acetate
- **B = A**cetonitrile
- 500 µL/min

10-45% B over 10 min

- *Reasonable* resolution in ~10 minute run time
- Need to balance adequate resolution with sample throughput

End of Part III

